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[1] As an important component of the International Satellite Land Surface Climatology
Project (ISLSCP) Initiative II data collection, eight state-of-the-art land cover/use data
sets have been compiled and made consistent with the ISLSCP Initiative II land/water
mask in support of global modeling efforts. These data sets contain new and improved
global data sets at coarse resolutions (1/4, 1/2 and 1�) describing historical, recent
and present land cover conditions and are a testament to the tremendous progress made in
this area over the past decade. In addition to the historical data, data describing the subcell
heterogeneity in land cover are also provided, both in terms of subcell proportions of land
cover classes and vegetation continuous fields such as % tree, grass and bare cover.
Here we present the various ISLSCPII land cover data sets and compare the principal
satellite-derived data sets and the effect of their respective aggregation methods. We find
that despite some notable disagreements among similar classes, the satellite-based data
sets agree remarkably well over large portions of the Earth’s surface (over 50% for all
resolutions). We also find that the methods of aggregation, whether done by a strictly
dominant type, or using more information on subcell tree cover, can have an important
impact on the final output and need to be considered by the user. Finally, by integrating the
vegetation continuous fields data into our analyses we are able to show that the principal
differences in terms of discrete land cover classes are in fact transition zones between
similar classes.
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1. Introduction

[2] Contemporary, accurate, and consistently repeatable
global land cover characterizations such as land cover/use
classifications and/or vegetation continuous fields (e.g., %
tree cover) play an important role in various aspects of
global change studies. Present land cover conditions are
needed to generate land cover dependent biophysical
parameter fields used in many current General Circulation
Models (GCMs) and Numerical Weather Prediction Models.
These models can simulate atmospheric circulation and
climatic variables such as temperature, rainfall, humidity
and wind at a fairly coarse spatial scale and under various
global warming scenarios [Dickinson et al., 1986; Sellers et
al., 1996a]. The inclusion of land into these computerized
models has progressed greatly since the first description of
land as a ‘‘bucket’’ by Manabe [1969]. Most current models
are now coupled with Land Surface Parameterization
(LSPs) models which have depended on digital compila-

tions of global land cover such as those of Olson et al.
[1983], Matthews [1983], Wilson and Henderson-Sellers
[1985], or more recent satellite-derived land cover maps
such as those of DeFries and Townshend [1994a], Loveland
and Belward [1997], Hansen et al. [2000], Friedl et al.
[2002], and Bartholomé and Belward [2005], among others.
The LSPs come from a realization that vegetation and soils
play an important role, both in space and time, in regulating
the exchange of energy, gases and water vapor between
the biosphere and the atmosphere and, as such, should
be included in global simulations [Charney et al., 1975;
Dickinson, 1983]. The LSPs serve to produce databases or
look-up tables of land cover dependent albedo, surface
roughness, and evapotranspiration and respiration, parame-
ters that control, respectively, the transfer of energy, mo-
mentum, mass, and latent and sensible heat between the
biosphere and the lower layers of the atmosphere [Dorman
and Sellers, 1989; Bonan, 2002]. These digital land cover
maps also provide the means by which to include the fine-
scale heterogeneity of land processes within the coarser grid
of the GCMs.
[3] Land cover information is also an important input to

biogeochemical, ecosystem, and hydrological models which
track the cycling of carbon, nutrients, energy and water
between the biosphere and the atmosphere [Melillo et al.,
1993; Running and Hunt, 1993; Melillo, 1994; Nemani and
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Running, 1996]. Some of these models can simulate the
response of terrestrial ecosystems to elevated CO2 concen-
trations and/or climate change, for example. By quantifying
the gross and Net Primary Production (NPP) of these
ecosystems they can help to identify the geographical
location of the principal sources and sinks of carbon, and
their temporal and spatial variability, as well as providing
improved estimates of the size of various global carbon
pools [e.g., Kicklighter et al., 1999]. Vegetation type infor-
mation is important to these models because various plant
and tree species have varied mechanisms for photosynthesis
and carbon assimilation which can be affected by different
stresses, all factors which can in turn significantly alter
estimates obtained from the models [Bonan, 1995; Bondeau
et al., 1999].
[4] Finally, there is still disagreement between estimates

of the land cover conversion which has occurred in the past,
and is occurring now, but also on the rates of change in land
cover conversion [e.g., Skole and Tucker, 1993] and the
impact of such changes on the global carbon cycle [Plattner
et al., 2002; Houghton, 2003]. Global land cover character-
izations can simplify the monitoring of natural or human-
induced changes of land cover/use and are important in
modeling the consequences of these changes on local and
global processes [e.g., Bonan, 1997; Bounoua et al., 2002].
Clearly, if land cover can be accurately measured and
consistently monitored globally for a period of several
years, significant changes over time, and the rates of these
changes, could be quantitatively evaluated and some of the
above uncertainties potentially reduced. In fact, recent
global land cover classifications have been used as a
baseline from which land cover change models can be
applied to determine the historical land cover change and
rates of change, as demonstrated by Ramankutty and Foley
[1999] for croplands.
[5] While it remains a highly desirable goal to parame-

terize global models directly from the remotely sensed
observations, the use of static or semistatic land cover data
sets for model parameterization is still anticipated for the
near future. In alignment with the goals of the International
Satellite Land Surface Climatology Project (ISLSCP) Ini-
tiative II Data Collection, a collection of state-of-the-art
land cover data sets has been compiled in collaboration with
the data set producers, reprocessed to common spatial
resolutions of 1/4, 1/2 and 1� in both latitude and longitude,
with common land/ocean boundaries, to support global
modeling efforts. The purpose of this paper is to present
these ISLSCP Initiative II land cover data sets, compare and
contrast several of the satellite-derived data sets, discuss
issues of consistency between the various data sets, and
provide an assessment of the progress in these data since the
publication of the first coarse resolution satellite-based land
cover data sets as a part of the first ISLSCP data collection
[Sellers et al., 1996b].

2. Background

[6] The single land cover data set provided in the ISLSCP
Initiative I data collection was a 1� by 1� land cover map
based on satellite data from the Advanced Very High
Resolution Radiometer (AVHRR) [DeFries and Townshend,
1994a] and was the first such data set to be generated from

remotely sensed data at a global scale. The impetus for the
production of that data set was a comparison carried out by
DeFries and Townshend [1994b] of the three most widely
available digital global land cover classifications at the time,
those of Olson et al. [1983], Matthews [1983], and Wilson
and Henderson-Sellers [1985]. DeFries and Townshend
[1994b] found that only 26% of the total land area was
classified as the same land cover type in all three maps and
also noted large discrepancies in terms of the spatial
distribution of different major land cover types as well as
their actual areal extent over the globe. Because satellite
remote sensing provides a synoptic view of the Earth and is
able to perform consistent and repetitive quantitative meas-
urements of many terrestrial processes at a variety of spatial
scales, they argued that remotely sensed data sets could
potentially provide the means by which to generate more
consistent and accurate global-scale land cover data sets.

2.1. Global Land Cover Maps Compiled From
Ground-Based Sources

[7] Historically, land cover classifications have been per-
formed from ground surveys and/or previous maps and the
mapping or delineation of land cover types has typically been
made by reference to climate, physiognomic characteristics,
floristic composition, or geographical location [Mueller-
Dombois, 1984; Prentice, 1990]. Several important points
can be made about these classifications. First, they are
subjective in that they reflect the biases of the compilers
and the variety of sources they depend on. Second, they offer
only qualitative information that is not very useful for input to
computerized models of global change.
[8] Several digital maps of global vegetation [e.g., Olson

et al., 1983;Matthews, 1983;Wilson and Henderson-Sellers,
1985] have been compiled from a variety of ground-based
sources such as paper maps and atlases, and limited satellite
data. While the above databases have been used extensively
to support climate change studies, they also are influenced
by the decisions and choices of the compilers as well as the
quality of their sources. As previously noted, these have
disagreed both in terms of the land cover present as well as
the areal extent of particular biomes [Matthews, 1983;
DeFries and Townshend, 1994b] but, in all fairness, the
differences may also reflect the different purposes of each
database. Another difficulty in comparing these data is that,
because of the varied methods, classification schemes, and
age of sources used, it is not always entirely clear whether
the maps reflect the potential or actual vegetation cover,
except in the case of bioclimatic classifications. Finally,
because they have relied on ground-based sources, any
updates or changes have been difficult to implement.

2.2. Global Land Cover Characterizations From
Remotely Sensed Data

[9] Satellite remote sensing has been, and is currently
being, explored as an attractive alternative for actual conti-
nental to global-scale land cover classifications [Tucker et al.,
1985; Townshend et al., 1987; Loveland et al., 1991;DeFries
and Townshend, 1994a; Running et al., 1995; Loveland and
Belward, 1997; DeFries et al., 1995, 1998; Hansen et al.,
2000; Friedl et al., 2002; Bartholomé and Belward, 2005].
These studies used remotely sensed spectral data acquired
from instruments such as the AVHRR, the MODerate
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Resolution Imaging Spectroradiometer (MODIS) or the
Système Probatoire Pour l’Observation de la Terre (SPOT4)-
VEGETATION, coupled with their temporal evolution, to
separate land cover classes at the continental and/or global
scales. These classifications have typically relied on the
variability as a function of cover type of the Normalized
Difference Vegetation Index (NDVI). This index, defined as
the difference of the solar energy reflected from surfaces in the
near-infrared and red portions of the electromagnetic spectrum
divided by their sum, is recognized as a broad indicator of
surface ‘‘greenness,’’ photosynthetic activity, and canopy
phenology [Asrar et al., 1984; Justice et al., 1985; Daughtry
et al., 1992].
[10] The approach of Loveland et al. [1991], Loveland

and Belward [1997], and Bartholomé and Belward [2005] is
essentially based on utilizing 12 months of NDVI data with
an unsupervised classification algorithm. A large database
of ancillary information is used as an aid for the human
interpretation of the results. Because of the laborious nature
of the postprocessing of these unsupervised classification
data sets, they have been produced irregularly and are
difficult to implement completely objectively and repeatedly
for data sets of multiple years. Other techniques, such as
those of DeFries et al. [1995, 1998], and Hansen et al.
[2000], are supervised classification approaches which rely
on a data set of carefully screened global training data
derived from Landsat data; they also used the NDVI, but in
conjunction with information from the individual spectral
bands of AVHRR, including those in the thermal wave-
length region, to improve the efficacy of remotely sensed
global land cover classifications. The current MODIS land
cover algorithm [Friedl et al., 2002] follows the heritage
of supervised classification from AVHRR but its inputs are
16-day composites for the individual MODIS land bands and
the Enhanced Vegetation Index (EVI) for an entire year. The
current land cover algorithm for the Visible/Infrared Imager/
Radiometer Suite (VIIRS) scheduled to fly on the future
National Polar Orbiting Environmental Satellite System
(NPOESS) [Brown de Colstoun et al., 2000] follows from
the AVHRR and MODIS heritage as a supervised classifi-
cation and also uses a decision tree classifier but is closer to
the approach used by Hansen et al. [2000] in terms of data
inputs. Finally, the same approach used by DeFries et al.
[1995, 1998] and Hansen et al. [2000] to generate global
land cover products has also been used with linear mixture
models and regression tree algorithms to generate global
fields of continuous vegetation characteristics such as tree,
herbaceous and bare cover [DeFries et al., 1999; Hansen et
al., 2002]. These products are found to more closely
represent natural gradients and ecotones in vegetation char-
acteristics, as opposed to the classification of cover types
into discrete values and in fact may potentially be more
useful to global modelers than stratifications by land cover
because they scale linearly to coarser resolutions.
[11] The production of these global land cover data sets

would simply not have been possible without the production
of the input data necessary for the classifications as well as
the production of global training data sets from Landsat data
[DeFries et al., 1998]. The first data sets of DeFries et al.
[1995, 1998] were produced using the Pathfinder AVHRR
Land (PAL) data sets at 8 km spatial resolution [James and
Kalluri, 1994]. In parallel, and under the auspices of the

Data and Information System of the International Geosphere
Biosphere Programme (IGBP-DIS), a global 1 km data set
from AVHRR data was produced spanning the years 1992–
1996 to address the needs of several of the IGBP’s programs
[Townshend et al., 1994]. This 1 km data set [Eidenshink
and Faundeen, 1994] forms the core input data for several
land cover data sets provided in this ISLSCP Initiative II
data collection (Table 1), including the University of Mary-
land (UMD) land cover data set [Hansen et al., 2000], the
IGBP-DIScover vegetation classification [Loveland and
Belward, 1997], and the UMD continuous fields of vegeta-
tion cover [DeFries et al., 2000]. A recent (2000–2001)
MODIS land cover product from MODIS collection 4
[Friedl et al., 2002] has also been added to the ISLSCP
Initiative II land cover ‘‘suite’’ to provide a linkage to future
data sets that will become available with MODIS and
VIIRS. We note that a recent global land cover data set
based on SPOT-VGT data named GLC-2000 has been
produced under the coordination of the European Commis-
sion’s Joint Research Centre [Bartholomé and Belward,
2005] but was not available within the time constraints for
publication in the ISLSCP Initiative II collection.

2.3. ISLSCP Initiative II Land Cover Data Sets

[12] While the ISLSCP Initiative I collection contained a
single global land cover data set, the Initiative II collection
now contains 8 different state-of-the-art data sets dealing
with various aspects of land cover and/or land use (Table 1),
including two historical land cover data sets: the historical
croplands fractional cover data set of Ramankutty and Foley
[1999], covering the period from 1700–1992, and a related
historical land cover and land use (1700–1990) data set
from the National Institute of Public Health and the Envi-
ronment (RIVM) in the Netherlands [Klein Goldewijk,
2001]. Ramankutty and Foley [1998] derived a spatially
explicit data set of croplands for the year 1992 by synthe-
sizing remotely sensed land cover data (IGBP-DIScover
data set in Table 1) with contemporary land inventory data.
Furthermore, Ramankutty and Foley [1999] extended this
data set back to 1700 using historical land inventory data.
By extending their data set back in time, they were also able
to produce a land cover map of ‘‘potential’’ vegetation, or
the natural vegetation before human alteration or other types
of disturbance, which is also included in this collection.
Klein Goldewijk [2001] used historical statistical inventories
on agricultural land (census data, tax records, land surveys,
etc.) and different spatial analysis techniques to create a
geographically explicit data set of land use change, with a
regular time interval (see Table 1). These two new global
data sets of historical land cover change compare fairly well
over most of the Earth despite the different modeling
approaches and input data used [Klein Goldewijk and
Ramankutty, 2004].
[13] Another interesting addition to the ISLSCP II col-

lection is the data set of Still et al. [2003] which identifies
the fraction of each cell with a C4 dominant photosynthetic
pathway. This data set was actually produced from various
data sets which are also included in this collection: vegetation
continuous fields data [DeFries et al., 2000, see Table 1],
that describe the percent of a grid cell covered by herba-
ceous and/or woody vegetation; the historical croplands
data set of Ramankutty and Foley [1999]; climate data from
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the Climate Research Unit (CRU) at the University of East
Anglia in the United Kingdom [New et al., 2000]; and
national crop type harvest area statistics from the Food and
Agricultural Organization (FAO) of the United Nations
(UN-FAO) and the United Stated Department of Agricul-
ture (USDA). We refer the reader and future users to the
data set documentation and/or the above references for
more in-depth and specific information on the production
of the data sets in Table 1.
[14] The AVHHR-based data sets on Table 1 (UMD land

cover and continuous fields, IGBP-DIScover) were pro-
duced at a native 1 km spatial resolution from a 1 km global
AVHRR data set for 1992 – 1993 [Eidenshink and
Faundeen, 1994]. In the process of aggregating from 1 km
to 1/4, 1/2 and 1� spatial resolutions the percentages of each
class within the coarser cell are calculated and allow the
dominant land cover type to be determined. Thus each data
set contains one global layer with the dominant type and one
layer each per cover type showing the percentage of that
cover type in each cell (Figure 1). So in addition to
improved classification algorithms, improved input data
and spatial resolution, the ISLSCP Initiative II land cover
‘‘suite’’ now provides the user with a thorough description
of the subcell variability in land cover that was not available
in ISLSCP I data. Therefore the users may now also use

their own rules for aggregation using the layers for each land
cover class and potentially produce products that better suit
their needs.
[15] The IGBP-DIScover product is the only currently

available global product that has been validated against a
truly global, and statistically valid, independent set of high-
resolution data (�70% accuracy), although it is difficult to
say what those numbers may correspond to at the 1/4, 1/2,
or 1� spatial scales since the validation was done at 1 km
resolution [Scepan, 1999]. In fact, an analysis by DeFries
and Los [1999] suggested that the implications of the
classification errors for model parameterizations were sub-
stantially lessened at coarser resolutions when compared to
the native 1 km resolution of the IGBP-DIScover product.
Both the UMD and MODIS data sets have been evaluated
against subsets of the same data use to train the classifiers
and also have global accuracies near 70% [Hansen et al.,
2000; http://geography.bu.edu/landcover/userguidelc/
consistent.htm]. In addition, the MODIS land cover product
provides gridded estimates of classifier confidences for each
cell, addressing an additional user-stated need for accuracy
estimates of the products. Finally, in this collection, the
IGBP-DIScover data set is provided in three different
classification schemes (IGBP, SiB, BATS) to better support
the needs of the modeling community.

Table 1. Listing of Land Cover Related Data Sets Provided in the International Satellite Land Surface Climatology Project (ISLSCP)

Initiative II Data Collectiona

Data Category and Data Set Title
Author(s) and

Originating Institution
Input Data

Temporal Coverage Spatial Scale Data Set Comments

Vegetation
C4 vegetation percentage Chris Still, University of

California at Santa Barbara
1996–1998 1� % of each cell which

possesses the C4
photosynthetic pathway

Continuous fields of
vegetation cover

Ruth DeFries, University of
Maryland; Matt Hansen, South
Dakota State University

1992–1993 1, 0.5, and 0.25� % tree, grass and bare cover
and % needleleaf,
broadleaf, deciduous,
evergreen for tree cover

Historical croplands
fractional cover

Navin Ramankutty and
Jonathan Foley, University
of Wisconsin

1700–1992 1 and 0.5� every 50 years (1700–1850);
every 10 years
(1850–1980); every
year (1986–1992)

Historical land cover
and land use

Kees Klein Goldewijk, National
Institute of Public Health and
the Environment (RIVM),
The Netherlands

1700–1990 1 and 0.5� every 50 years (1700–1950);
every 10 years
(1950–1990);

MODIS land cover product Mark Friedl, Alan Strahler,
John Hodges, Boston University

2000 1, 0.5, and 0.25� dominant land cover type,
fraction of each cover
type and classifier
confidence for each cell

Potential vegetation Navin Ramankutty and Jonathan
Foley, University of Wisconsin

N/A 1 and 0.5� represents natural
vegetation before
human alteration

UMD land cover
classification

Matt Hansen, South Dakota
State University; Ruth DeFries,
University of Maryland

1992–1993 1, 0.5, and 0.25� dominant land cover type
and fraction of each
cover type in each cell

Vegetation classification
(IGBP-DIScover)

Tom Loveland and Stephen
Howard, National Center
for EROS (USGS)

1992–1993 1, 0.5, and 0.25� dominant type and fraction
of each cover type;
three classification
schemes (IGBP,
SiB, BATS)

Ancillary
Land/water masks,

land outline overlays,
latitude and longitude grids

Tom Logan, Jet Propulsion
Laboratory; ISLSCP II Staff

N/A 1, 0.5, and 0.25� binary water masks and
fractional water/land
cover in each cell

aThe data collection can be accessed online at http://www.daac.ornl.gov.
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Figure 1. Dominant land cover type determined from the proportions of the individual land cover types
at the original resolution of the products. The example here is for the University of Maryland (UMD) land
cover product at 1/4� resolution. Only 4 of the 15 layers with subcell percentages of land cover types are
shown for clarity. The dominant land cover type in each cell in the top map is determined from a
combination of the percentage of each cover type within that same cell.
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[16] New types of previously unavailable land cover
information are also available at the coarse scale in the
form of continuous fields of vegetation cover which
describe the % tree, grass and bare cover of each cell
(Figure 2), and the % leaf type and/or leaf longevity for
tree canopies. All these data sets have been made consistent
with the ISLSCP Initiative II land/water mask, which is also
based on 1 km original data, and which also contains
subcell fractions of water and land at each resolution (see
Table 1). This was done by first adjusting the percentage of
land and water of each product to correspond to the
percentages in the ISLSCP II mask, then recalculating the
proportion of each land cover type in the cell on the basis of
the new percentage of land, and then producing the dom-
inant cover type maps using aggregation rules specific to
each product.

2.4. Previous Land Cover Comparisons

[17] In addition to the product comparisons described by
Matthews [1983] and DeFries and Townshend [1994b],
Hansen and Reed [2000] have compared the UMD and
IGBP-DIScover classifications which are derived from the
common 1992–1993 AVHRR data set. They found that the
overall per-cell agreement of the two data sets at their
original 1 km resolution for all common classes was 48%.
For aggregated classes such as forest/woodland, grass/
shrubs, crops, this increased to 74% and to 84% when
considering even broader classes such as tall woody land
cover versus short and/or sparsely vegetated lands. While
they found that in general the IGBP-DIScover had more
areas of all forest types and the UMD data set showed more
areas with intermediate tree cover such as woody savannas
and savannas (i.e., woodlands/wooded grasslands), they
also found that the principal differences were along transi-
tion zones between large core areas. Another difficulty in
the comparison was the lack of natural vegetation/croplands
mosaic classes in the UMD map, and to a lesser extent,
permanent wetlands and ice classes. Finally, Hansen and
Reed [2000] determined that the overall agreement between
IGBP-DIScover and UMD was much greater at 0.5� reso-

lution than the agreement of the well-known digital land
cover maps of Olson et al. [1983] and Matthews [1983].
Their results show a significant decrease of 46% in the
amount of disagreement between the remotely sensed data
sets as opposed to the digital maps for four broad land cover
categories. In this study we have performed similar compar-
isons using the coarse-scale data in ISLSCP Initiative II at
1/4, 1/2 and 1� resolutions, but we have also analyzed the
effects of the aggregation methods on the agreement of the
two data sets and used the new data layers available in
ISLSCP II (subcell proportion of classes and continuous
fields products) to assess the areas of disagreement.

3. Data and Methods

[18] The data sets used in the land cover comparison here
were the IGBP-DIScover data set using the 17-class IGBP
legend [Loveland and Belward, 1997], and the UMD land
cover classification using 15 classes [Hansen et al., 2000],
at 1/4, 1/2 and 1� spatial resolutions. The MODIS product
was not considered in this comparison because of the nearly
10-year gap between the products. The 1/4� UMD vegeta-
tion continuous fields product was also evaluated against
the 1/4� UMD land cover product to check for data set
consistency. As discussed by Hall et al. [2006], the incom-
patibilities in land cover legends between the UMD and
IGBP schemes meant that we could only compare similar
classes and not classes such as the IGBP natural vegetation/
croplands mosaic, which is not included in the UMD
product, or the permanent wetlands category. We did
however examine the IGBP mosaic class in terms of its
subcell makeup in terms of the UMD classes. Also, even
though the UMD product did not contain a permanent ice
category, we did compare the IGBP-DIScover ice category
against the UMD bare category. In total, we were able to
compare the two products over 94% of the land surface.
[19] The two data sets have been aggregated to coarser

resolution using somewhat different rules that can influence
the dominant type found on the final land cover map. The
IGBP-DIScover product was aggregated using a strictly

Figure 2. UMD vegetation continuous fields product at 1/4� spatial resolution. The % bare, herbaceous,
and woody cover for each cell has been coded as red, green, and blue, respectively, to create this global
representation. Other vegetation continuous fields provided in ISLSCP Initiative II include leaf type
(needleleaf, broadleaf) and longevity (deciduous, broadleaf) for tree cover.
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dominant land cover type, whereby the land cover type with
the largest percentage in the cell was selected as the
dominant type, regardless of any other information included
the cell (see Figure 3a). As can be seen in Figure 3a,
however, a purely dominant type approach can create results
that may emphasize the importance of single land cover
types (e.g., croplands in Figure 3a) over multiple land cover
types such as forests. In Figure 3a, croplands is selected as
the dominant type even though the three forest types
account for 56% of the cell coverage. We should note that
Figure 3 shows just an illustration of the aggregation with
only nine cells and that for the ISLSCP Initiative II data sets,
windows of 120 � 120, 60 � 60 and 30 � 30 cells of 1 km
(i.e., 30 arc-seconds) were averaged to obtain the percen-
tages in each 1, 1/2 and 1/4� cell, respectively.
[20] The UMD product was aggregated by the data

providers using what we have termed a ‘‘modified’’ dom-
inant type approach (Figure 3b). This approach uses the
UMD class definitions, particularly in terms of woody
cover, and voting rules that account for the woody cover
of the aggregated cell, to assign a dominant type and
attempts to overcome some of the issues seen with a strictly
dominant approach. For example, this approach assigns
forest land cover types when the forest cover of the cell is

greater than or equal to 60%, wooded grasslands for forest
covers between 40% and 60%, and so on. From the results
shown in Figure 3b, it appears that the modified approach
may account for the subcell variability of cover types in a
more robust fashion than the dominant approach, although
the results globally are not substantially different for most
core areas.
[21] We have compared the IGBP-DIScover product with

the UMD data set first using a dominant approach for both,
and then the modified approach for UMD as is currently
provided in the collection, and analyzed the results in terms
of overall agreement at the various resolutions, global land
cover proportions for each land cover type as well as per
class agreements. For the principal areas of disagreement
between the two data sets, we have used the subpixel
proportions to better understand the nature of the differ-
ences, but also checked the makeup of the IGBP natural
vegetation/croplands mosaic against the UMD proportions.
Finally, we have also used the UMD vegetation continuous
fields data sets to both check the areas of disagreement
between the two land cover maps but also to check the
correspondence and consistency of this product and the
UMD land cover product. Clearly, these types of analyses
would not have been possible if the data sets did not
consistently overlay each other in terms of land/water areas
so that the work of making these data sets consistent with
the ISLSCP II land/water mask was essential.

4. Results and Discussion

[22] Figure 4 shows the results of the per-pixel compar-
isons of the two land cover data sets at multiple resolutions.
It is important to note that these comparisons provide a
good indication as to the level of consistency between the
data products and are not meant to imply that one product is
necessarily superior. The results show that, when using a
strictly dominant criterion for both data sets, the agreement
increases as the resolution gets coarser, from 48% at
1 km [Hansen and Reed, 2000], to 50.23% at 1/4�,
51.10% at 1/2� and 51.63% at 1�. When adding the agree-
ment of the IGBP permanent ice and the UMD bare
categories, the two data sets agree over 68% of the global
land surface, a remarkable agreement given the significant
algorithmic differences in generating the data sets. In con-
trast, when comparing the IGBP-DIScover with the modified
dominant type UMD map, we find that the agreement
decreases with coarser resolution, from 46.87% at 1/4� to
45.55% at 1�. Clearly, it appears that the methods of
aggregation to coarser resolution do have an important effect
and that the agreement of the data sets increases with coarser
resolution for both data sets aggregated using the same
dominant method. The modified approach tends to create
more and more ‘‘mixed’’ pixels classes such as woodlands as
the resolution gets coarser and thus begins to diverge with
the strictly modified version which will emphasize the
dominance of single cover types. Nonetheless, when looking
at the spatial differences between the two maps, our findings
are in agreement with those of Hansen and Reed [2000] in
that the large core areas of land cover are mapped similarly
in both products, and the larger differences are found in
transition zones between similar cover types. Again the
overall agreement of nearly 50% is a clear improvement

Figure 3. Illustration of two methods of aggregation of
finer-resolution land cover products to coarser resolutions.
(a) For the IGBP-DIScover and MODIS products, the
dominant type is selected from the maximum percentage of
any cover type in the cell, irrespective of type. (b) In the
UMD ‘‘modified’’ approach, the presence of multiple forest
types within the cell is accounted for as well as an
estimation of the amount of woody cover. The resulting
aggregation is more robust for Figure 3b because the cell is
at least 56% forest and only 33% cropland. IGBP classes
shown are evergreen needleleaf forest (1), deciduous
broadleaf forest (4), mixed forest (5), wooded savannas
(8), grasslands (10), and croplands (12).
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over the 26% agreement found by DeFries and Townshend
[1994a] using the Olson et al. [1983], Matthews [1983] and
Wilson and Henderson-Sellers [1985] maps.
[23] We averaged the subcell proportion layers associated

with each map to obtain the percentage of each land cover
type on the surface of the Earth estimated by each map, as
shown on Figure 5 for the 1� resolution data. Similar to
what Hansen and Reed [2000] did with global land area
totals for each class but with proportions here, we find that
at this resolution the IGBP-DIScover map contain more
forests than the UMD map (+6.51%) while the UMD has
substantially more woody savannas and savannas (+13%),
corresponding to the woodlands and wooded grasslands
UMD classes. Proportions for the shrublands classes, grass-
lands and croplands are quite close, within 2%, while the
proportion of the IGBP ice and bare categories are 1%
higher than the UMD bare categories. We also found that
the proportions for the urban classes of the two data sets did
not match, even though both data sets used the same Digital
Chart of the World as the source for this class. Differences
in the water proportions for both data sets were also found
but addressed by making the data consistent with the
ISLSCP II land/water mask.
[24] An examination of the typical areas of disagreement

for each land cover class showed substantial disagreement
between the five different forest types, although the ever-
green broadleaf forest compared quite well between the two
data sets. Over 90% of this class in the UMD map was
mapped accordingly in the IGBP-DIS while 72.28% of all
the IGBP-DIScover evergreen broadleaf forest was mapped
as such in the UMD data set. In general the UMD forest
types, except for deciduous broadleaf forest, were fairly
well mapped in the IGBP-DIScover product. Reasonable
agreement was found for the open shrublands (>50%),
croplands, grasslands and bare categories. Fairly large
disagreement was found in the woody savanna, savanna,
and closed shrublands classes but very often the source of
this disagreement was between similar classes such as

Figure 5. Global land cover proportions for the 1� IGBP-DIScover and UMD land cover products
derived from an average of the subcell proportion layers at the same resolution.

Figure 4. Per-cell agreement of IGBP-DIScover and
UMD land cover products at several spatial resolutions
and using either a dominant or ‘‘modified’’ dominant
aggregation scheme. Results of a comparison including the
IGBP-DIScover permanent ice category against the UMD
bare category are also shown. The agreement value of 48%
at 1 km resolution is from Hansen and Reed [2000].
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woody savanna and savanna, or between closed and open
shrublands, for example, and not between core classes like
forests and bare soil or croplands. In fact, 15% of the total
disagreement could be attributed to the UMD woodlands
(i.e., woody savanna) class alone, and together with the
wooded grasslands (i.e., savanna) class, accounted for 22%
of all the total disagreement. Likewise, the IGBP-DIScover
mixed forest class was confused across almost all the UMD
classes. When grouping all forest classes into one, both
savanna classes into another and both shrublands classes
into yet another, the agreement was approximately 60%,
indicating that core classes compared well among the two
products, as shown by Hansen and Reed [2000].
[25] We used the tools provided in the ISLSCP Initiative

II collection to assess the typical areas of disagreement
between the data sets and also as a way to explore the
‘‘severity’’ of these disagreements. As an example, we used
the per-pixel proportions to check the composition of the
most common areas of disagreement which were between
the UMD woodlands and wooded grasslands classes and the
IGBP-DIScover forest classes. Results are shown in
Figure 6. What Figure 6 shows is that for the most part
the areas of disagreement are made up by a majority of the
woody savanna class, about 17% of the savanna and 10%
evergreen needleleaf forest. What this analysis confirms is
that the disagreements are indeed between classes with
similar tree cover and are found in areas where forests
transition into more open canopies and then into savannas,
such as the ecotones of the boreal forest, or the Miombo
woodlands of Africa. In Figure 6 we also show the subcell
composition of the IGBP-DIScover natural vegetation/
croplands mosaic class in terms of the UMD cover types
which show that this class is made up of a mixture of
croplands with the other cover types, but principally with
the savanna (i.e., woody grasslands), grasslands and woody

savannas (i.e., woodlands). This is entirely consistent with
the definition of this IGBP mosaic class and show how
these new types of data available in this collection can be
used for meaningful analyses.
[26] The areas of disagreement have also been explored

with the UMD vegetation continuous fields data. Although
this data set was generated separately from the UMD land
cover product and the approaches to generate each product
are different, we should note that the input AVHRR data and
the training data are the same for both data sets. Figures 7a–7c
show histograms for % grass, % tree and % bare cover for
each cell in the 1/4� data sets where we found disagree-
ment between the IGBP-DIScover forest types and the
UMD woodlands classes. For all of these cells the mean
value of % bare, grass and tree cover was 2.76, 51.21, and
44.75%, respectively. These figures show that, while there
are some apparent inconsistencies between the two UMD
products with unusually high and/or low values of tree
cover or grass cover, and also while there are some
substantial disagreements between the two land cover maps,
this disagreement is not as significant when considered in
terms of tree cover. Figure 7b shows that indeed many of
the confused areas are likely to be transition zones between
forest types, with greater than 60% tree cover, to woody
savannas with 40 to 60% tree cover, as seen in Figure 6 as
well. Figure 7a also confirms the confusion with savanna
classes with tree cover values between 10 and 40% and
Figure 7c confirms that there are few areas of confusion
with areas of low tree cover. These percentages of tree cover
are consistent with the IGBP-DIScover and UMD defini-
tions of woody savanna and savanna classes yet the smaller
differences seen here in terms of tree cover are amplified
when comparing discrete classes. We would like to reem-
phasize to potential users that while the maps may not
always agree on a category by category basis and cell by

Figure 6. Subcell composition of areas of disagreement between the IGBP-DIScover five forest classes
and the UMD woodlands and woody grasslands classes. The graph also shows the subcell composition of
the IGBP-DIScover natural vegetation/croplands mosaic class in terms of UMD cover types. These are
the types of analyses and comparisons that can be made with the subcell proportion data available in this
collection.
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cell basis, the differences in terms of the actual canopy
cover types considered are usually not large.
[27] As a final step in our evaluation, we have compared

the UMD continuous fields and land cover products to
check for internal consistency and also as an evaluation of
the UMD continuous fields data provided here. Table 2
shows the mean continuous fields values for all cells in each
UMD land cover type from the 1/4� data sets. Overall, the
mean proportions of bare, grass and tree cover are entirely
consistent with the UMD land cover definitions for each
land cover type, with forest types above 60% tree cover, for
example, woodlands with >40% tree cover and woody
grasslands with tree cover greater than 10%. There are also
some outliers where we find bare pixels with high tree cover

and/or forest types with high bare cover, but these are
uncommon. These inconsistencies do point to the need for
a potentially common, or at least internally consistent,
processing method(s) for these types of data sets. Finally,
the mean values in Table 2 for both the evergreen needleleaf
and deciduous needleleaf forest classes are lower than for
the other classes, and close to 60% tree cover, which may
explain some of the disagreements seen with the IGBP-
DIScover maps for these classes. Likewise the mean value
of 41.95% tree cover for the woody savannas class is
somewhat low and may be indicative of the source of
disagreements with this class. Also, it is interesting to note
that the mean composition of the urban class according to
these data contains very little bare areas but again this class
has not been provided by the remotely sensed data but
rather has been superimposed from a static database.

5. Conclusions

[28] The various land cover data sets provided in the
ISLSCP Initiative II data collection to support global
modeling efforts represent the tremendous progress made
in this area over the past decade or so. From the first global
data set from remotely sensed data provided in ISLSCP I
[DeFries and Townshend, 1994a], we have now progressed
to multiple and improved data sets that accurately describe
the past, present and future land cover conditions on the
Earth. The algorithms to generate such data sets have
progressed to include machine learning classifiers such as
decision trees [Hansen et al., 2000; Friedl et al., 2002]
which can efficiently handle nonnormal distributions in the
training data; new global training data sets generated from
high-resolution data and improved input data at higher
spatial resolutions are now available and being used for
validation as well; the number and types of classes that can
be provided has been greatly expanded, and finally, partic-
ularly for modeling applications, the subcell variability in
terms of land cover types is provided with each data set.
New types of data sets with subcell information have also
become available such as the vegetation continuous fields
data and the C4 fraction data set of Still et al. [2003], giving
the user great flexibility in land cover class definitions but
also providing a better representation of landscape continu-
ity across land cover types and ecotones. All of these new
and improved data sets should in turn provide improved

Figure 7. Histograms showing the subcell proportions of
(a) % grass, (b) % tree, and (c) % bare cover from the UMD
vegetation continuous fields data set for all cells where the
IGBP-DIScover forest types and the UMD woodlands
categories disagreed at a 1/4� resolution.

Table 2. Mean Subpixel Proportions for Each UMD Land Cover

Type in Terms of the UMD Vegetation Continuous Fields Data

Land Cover Class % Bare % Grass % Tree

ENeF 1.79 35.4 60.98
EBrF 2.60 22.11 73.64
DNeF 1.78 35.63 61.74
DBrF 1.11 30.01 67.91
MixF 1.73 31.02 65.91
ClSh 15.58 79.68 3.42
OpSh 38.15 59.65 0.69
Wdld 2.91 53.86 41.95
WoGr 4.12 72.32 22.09
Gras 4.12 87.50 4.61
Crop 1.87 87.61 9.5
Urbn 2.41 76.36 15.77
Bare 95.47 3.83 0.02
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estimates for those models that are using them for land
surface parameterizations.
[29] Our comparison of the two most widely used land

cover data sets for the 1990s shows that, despite some real
differences at the level of individual classes, the two data
sets agree over nearly two thirds of the Earth’s surface and
for large core classes. The comparison also shows that
clearly, the methods used for aggregation of the products
can have a significant impact on the final land cover
product. However, while the ‘‘modified dominant’’
approach does appear to produce more robust results, there
are to date no guidelines or ‘‘best practices’’ for users to
follow in the aggregation of land cover from moderate to
coarse resolutions. Also, more analyses are needed to assess
the impact of these aggregation methods on the final results,
and their subsequent impacts upon the models that use
them.
[30] The areas of disagreement, when considered in terms

of tree cover, are shown to be transition zones between
similar classes and as such their impact on modeling studies
may not be as severe as the disagreement between discrete
classes seems to indicate. The level of agreement between
the data sets also shows a marked improvement over the
agreement of previously available digital data sets. However,
the data set inconsistencies seen here do point to the need for
better integration and harmonization of efforts and more
consistent approaches aimed at reducing interproduct differ-
ences and thus facilitate the use of the data. It is also critical
to note that the increased agreement between two data sets
does not necessarily make either one correct, since they
could agree to 100% and yet still be both wrong. This points
to the need for a sustained and continued effort of indepen-
dent validation of these data which will allow absolute
accuracies to be derived for each product and facilitate
intercomparisons. Of particular interest to the modeling
community will be the validation at coarser resolutions such
as 1=4,

1=2 or 1�.
[31] There are a number of issues that remain to be

resolved from a continuing dialogue between the users
and producers of these global land cover data sets. The
first is the need for consistent land cover legends to support
a majority of users. This can be facilitated by the develop-
ment of a global Land Cover Classification System (LCCS)
[DiGregorio and Jansen, 2000] by the FAO which is a
standardized, hierarchical and flexible classification scheme
that can be applied irrespective of the source or spatial
resolution of the input data. The appeal of the LCCS for
global land cover data sets is that is can also be easily
collapsed and/or expanded into more or less classes (i.e.,
cross-walked) to support a wide variety of users. Alterna-
tively, continuous fields approaches that completely bypass
the classification scheme may provide a more flexible and
accurate approach for land cover product generation. How-
ever, this approach will demand some parallel model
development so that these data can be used more effectively
than they are in current global models. Likewise, classes
such as urban areas and wetlands need to be better integrated
into future global models.
[32] Finally, the one critical land cover data set that is

missing from ISLSCP Initiative II is land cover/use change
or disturbance. With new and improved algorithms and data
sets, it is now possible to generate time series of land cover

products from remotely sensed data, instead of the static,
1992–1993 data set provided here. The challenge remains
the integration of ‘‘historical’’ data sets such as those of the
AVHRR with those of MODIS and VIIRS, and more
importantly, the development of an approach the can
consistently separate interannual vegetation changes from
actual land cover/use change. It also remains a significant
challenge to archive, monitor and generally upkeep the
global, high-resolution training data used for the classifica-
tions as these change and/or are updated over time. As we
look to the future and the NPOESS systems it will be critical
that the long-term land cover/use record be established and
maintained.
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